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Theoretical analysis of a dynamic thermoconvective pattern in a circular container
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The gravity- and surface-tension-driven thermoconvective instability of a fluid layer contained in a no-slip
circular container of aspect ratio 2.5 is investigated. Linear and nonlinear analyses are developed. From
amplitude equations the bifurcation diagram of the system is deduced, and the different stable convective
patterns are studied. In particular, it is shown that a stable heteroclinic cycle due to a 1-2 spatial resonance is
predicted. This cycle is also shown to be in agreement with recent experimental observations of a dynamic
mode switching.

PACS numbgs): 47.20—k, 05.45~a, 44.25+f, 47.27.Te

[. INTRODUCTION namics of the system can be described by amplitude equa-
tions forming a low-dimensional system of ordinary differ-
Pattern formation is an important subject of fluid mechan-ential equations whose bifurcations give rise to the same
ics. In particular, Rayleigh-Beard-Marangoni thermocon- dynamic behavior as that seen in experim¢sis
vective instabilities have interested many researchers for Thermoconvective instabilities in confined domains have

about a century. Interesting reviews and bibliography on thiglready been studied theoretically by several authors. The
problem can be found, for instance, in the book by Ko-different works can be classified into two broad categories,

schmiedef 1] or in Ref.[2]. depending on the type of boundary conditions used for the
When a horizontal liquid layer is heated from below, it is velocity along the sidewalls. In Reff9—12], the sidewalls
well known that convection sets in provided the temperatur@f the containers are assumed to be “slippery,” or, more
difference between the bottom and top of the system is large?recisely, “vorticity free,” while more realistic no-slip walls
than some critical value. In horizontally infinite layers the Were considered, for instance, in Reffs3-17 (see also the
instability is most often stationar}8], and a steady regular references from these paperhe model of slippery walls is
structure of hexagonal, square, or roll-like convective cells igluite convenient since it enables a complete separation of the
observed above the threshg#6]. However, when the lig-  Vertical and horizontal space coordinates in the eguations. In
uid layer is confined in small containers with vertical side-a Very interesting papef12], Echebarm, Krmpotic and
walls, fascinating nonsteady behaviors have also been difeez-Garca described dynamic solutions in such containers.
covered in experiments quite recently. In Ref7], Their anal_ysis showed the possibility of nonstationary behav-
Ondaraihu et al. report observations of three kinds of oscil- i0rs (rotating waves, modulated rotating waves or hetero-
lating patterns in a square container with aspect ratidth ~ clinic orbit) resulting from a 1-2 spatial resonance of two
over heigth 4.6. These dynamic behaviors are related by thélifferent modes of convection. The purpose of the present
authors to the presence of a Takens-Bogdanov bifurcation iWork is to extend their approach to realistic no-slip side-
the system. walls, and to compare the theoretical predictions with experi-
More recently, in a circular container with aspect ratio Ments.
(radius over heightequal to 2.5, a dynamic mode switching
between two two-cell patterns related byr£ rotation about IIl. BASIC EQUATIONS
the vertical symmetry axis of the system was obsef@dn
this experiment, the fluid was lying below an air layer so that The basic equations of the problem in the frame of the
both the gravity and the surface-tension variations with temBoussinesq approximation are well known. Considering the
perature were active in the instability mechanismperturbations with respect to a conductive state, these equa-

(“Rayleigh-Benard-Marangoni instability?. tions read
In the present paper, we propose a theoretical analysis of
this mode switching. More precisely, we show that the dy- V.u=0, (1)
Pri[gu+u-Vu]=—-Vp+Au+RaTe,, 2
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We have chosen a verticalxis in the direction opposite
to gravity. The equations are written in a nondimensional
form with distances scaled hy; the thickness of the liquid
layer. The time scale is given W/, with « the heat dif-
fusivity of the liquid. The temperature scale is choseiBds
with B the vertical temperature gradient within the liquid
layer in a purely conductive state, and the velocity is scaled
by «/d. Symbolsu=(u,v,w), p, andT represent the nondi-
mensional velocity, pressure and temperature perturbed
fields. The Rayleigh and Prandtl numbers Ra and Pr are de-
fined as

apd?
Ra= gab , 4
VK
14
Pr=—, 5
K
wherev and « are the liquid kinematic viscosity and coeffi- FIG. 1. Critical nondimensional temperature difference vs as-

pect ratio. The first and second eigenvalues are represented as thick

cient of thermal expansion.
The boundary (E)onditions at the bottom of the bax ( and thin lines. The value of the azimuthal wave numimes indi-
cated on each curve.

=0) express that the wall is rigid and perfectly heat conduct-
ing. The upper free surfacez€1) is assumed to remain
undeformed, while the surface tension is supposed to be ia plotted as a function of the aspect ratipfor a in the
linear function of temperature. The heat transfer is modeledeighborhood of 2.5 (Raand Mg are the critical Rayleigh
using a Biot condition. The mathematical expressions forand Marangoni numbexsin the calculations leading to these
these conditions are curves, as well as in the other results presented in this paper,
the thickness of the liquid layer is 5 mna (is varied by
changing the radius of the containelhe viscosity of the
T fluid is 1 S (10* m?s™1), and the Prandtl number is equal
w=—+BiT=0 at z=1, (7)  to 1000. The air layer above the liquid has a depth equal to
9z half of the depth of the liquid layer, so that the air layer can
J be considered as purely conducti#18,19. An equivalent
u JdT  dv JT . . . .
—+Ma—=—+Mar 1—=0 atz=1, (8 Biot number can then be defined by using E41) in Ref.
9z ar oz I [16]. With conductivities for the air and for the liquid being
0.026 and 0.16 Wm* K1, respectively, this Biot number is
equal to 0.43. The negative of the derivative of surface ten-
sion with respect to temperature is equal to< B0 °
yBd? Nm~ 1K1 and the density of the liquid is 968 kgth The
Ma= Pk’ 9 coefficient of thermal expansion is fixed to %604 K1,
The above values for the different quantities are chosen in
is expressed in terms of, the sign-changed derivative of order to correspond to the experiments reported in F83f.
surface tension with respect to temperature, and the fluidxcept that the thickness of the air layer is smaller in order to

u=T=0 at z=0, (6)

wherer and ¢ are the horizontal polar coordinates. The Ma-
rangoni number Ma, given by

mass density. ensure that the upper gas remains mechanically pag3jve
The lateral sidewalls are rigid and insulating so that one The different curves in Fig. 1 correspond to different val-
has ues of the azimuthal wave numbex For eachm, thick and
JT thin lines are used to represent the threshold of the first and
u=—=0 atr=a, (10 second eigenmodes, respectively. In the neighborhocal of
ar = 2.5, the convective threshold is characterized byrenl
wherea is the aspect ratio of the container. pattern. Fora=2.5,\. is equal to 1.24, while the critical

Rayleigh and Marangoni numbers are given by 292 and 64.1,
respectively. A codimension-two point appearsaat2.961.
For this aspect ratio, th@=1 and 2 critical curves intersect,

A general linear stability analysis for this problem was and the two modes are simultaneously unstable. Note that the
carried out in Ref[17]. Only the results needed later are m=0 mode becomes unstable quite close to the instability
given in Fig. 1, where the critical nondimensional tempera-threshold of then=1 and 2 patterns. It is important to men-

IIl. LINEAR STABILITY ANALYSIS

ture difference\., defined as tion that these results are quite different from those obtained
under the assumption of slippery lateral waliee, for in-
N :R_ach Ma, (11) stance, Fig. 1 in Ref12]). In particular, then=0 curve for
¢ 669 79.6 slippery walls is quite far from the intersection of the other
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two modes. Moreover, the aspect ratio giving rise to the TABLE I. Values of the coefficients of the amplitude equations.
codimension-two point is much smalles£ 1.15) than ours.

Ao A Az

IV. NONLINEAR THERMOCONVECTION FOR a=2.5 Iy 5.83 l 763 |, 8.32

The second step of our analysis is devoted to a description?? —03872 oy 0.00 72 —0.710
of the system above the convective threshold, i.e., in the 9000 1.89 G101 0.742 Q02 —1.64
nonlinear regime. The method consists in reducing the dy- Y011 17.1 Q112 9.89 G211 1.02
namics of the system to the dynamics of the most unstableYo22 17.0
modes. The procedure is completely similar to that presentedCoooo —264  Ciom =245  Cy —9.99
in Ref. [16] for the study of rectangular no-slip containers Coo11 —137.  Cior2 —331  coon —-27.0
and will be summarized only very shortly. The solution of Cooz2 —180.  cun —106.  cap —164.
the nonlinear partial differential equations system is first ex- Coi12 8.95 Cia21 —106.  Co —-71.8

panded in a series of the eigenmodes of the linear problens
These eigenmodes are numerically obtained by fixing the
temperature difference across the liquid to its critical valuether to stationary solutions or to traveliffgptating waves
and by considering the linear growth rate as the eigenvalu¢12]. A standard bifurcation analysis usingT097 software
In the weakly nonlinear regime, the dynamics of the systenwas carried out on this system. The bifurcation diagram is
is dominated by the dynamics of the most unstable modes djfiven in Fig. 2, where the full and dashed lines represent the
convection with the largest growth rates. A careful examinastable and unstable solutions, respectively.eAt0 (point
tion of the numerical data corresponding to Fig. 1 shows thaB,), the m=1 mode bifurcates supercritically. Its nonlinear
for a=2.5, the firstm=0, 2, and 3 modeghick lineg be-  autointeraction generates the=0 and 2 modes, so that the
come successively linearly unstable for relative distances toomplete pattern is a superposition of the three modes. The
the threshold e=(\—\.)/\.)] equal to 6.3% 10 2, 8.53  convective pattern of this mixed mode solutidh, is de-
X102, and 15.4% 10 2. All the other modes become un- picted in Fig. 3, where the vertical velocity at middepth of
stable for still larger values of. Therefore we choose the the container is plotted. The primary bifurcations of tne
m=0, 1, and 2 modes as the most unstable convective pat=0 and 2 modes at=6.37x10 2 (point By) and 8.53
terns, or “active” modes, whose interactions determine thex 10~ 2 (point B,) do not give rise to stable solutions. On the
weakly nonlinear behavior of the fluid layer. The so-calledM, branch, thanks to a secondary bifurcation, another stable
amplitude equations are then obtained by a standard slavirgplution which corresponds to a rotating wave (RW) pattern
principle (see, for instance, Ref16]), for which the slaved appears. This RW pattern exists only for a small range, of
modes are all thenonactive eigenmodes with a linear between 31.% 10 2 and 33.0< 10 2. The rotating pattern is
growth rate larger than-50 and with an azimuthal wave also a superposition of the three elementary modes and is
numberm between 0 and 4; all the other modes are simplyrepresented in Fig. 4. The period of rotation is 126ndi-
disregarded. The validity and convergence of this procedureensional timgfor e=32.8x 10 2. For the silicon oil used
will be discussed briefly later on. The obtained system ofin the experiment§s], the dimensional period is then around
equations for the complex amplitud@g, A;, andA, of the 10 h, so that the rotation is quite slow. The RW branch loses
m=0, 1, and 2, modes is the following: stability at e=33.0x10"2 due to a Hopf bifurcation. This
bifurcation is subcritical and no stable modulated wave

Ao=(lpe+ ao)Ag+ GoooAd + doa1 Al ®+ dozd Aol >+ ooy
+ Coo1A0l Axl?+ Coozol Azl + Copa A ATAS + A,AT?),
(12 0.2

0.25

Ar=(l16+ 1) A1+ Q10A0AL + O11ATAL+ ClOOlAgAl 0.15

+C101A0AT AL+ C1111 A PAs + Cron A °Ap, (13 A, 0.1

Ao=(l26+ 09) Ag+ UpoPoAz T U211A% + CoooATA, 0.05

+Co01A0AL + Cor1d Ag[PAn+ Conpd Agl Ay, (14)

The values of the different coefficients in these equations
are given in Table (the normalization condition used for the
eigenmodes was given in Rdfl7]). Equations(12)—(14)
describe the interactions of the three modes 0, 1, and 2
in the neighborhood of the threshold. When polar coordi- F|G. 2. Bifurcation diagram foa=2.5. The amplitudé\, of the
nates are used for the complex amplitudes, the rotationgh=0 mode is represented as a function of the relative distance to
invariance of the physical system allows the removal of onehe thresholct. Stable and unstable branches are represented by full
of the two phase variables. The equilibrium solutions of thisand dashed lines8,;,B,, andB, indicate the primary bifurcation
reduced system correspond for the real physical system epoints for them=1, m=0, andm=2 modes.
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FIG. 3. Vertical velocity at middepth for th#l; solution (e 0 o
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(MW) can be observed. From this bifurcation point urtil FIG. 5. Time evolution of the amplitudes for the heteroclinic
=53.5x10"2, no stationary solution exists for the reduced orbit (e=40x 1072).

system. Numerical integrations have shown that in this sition of the m=2 and 0 modes, while; remains very

range, a stable heterocl|n|c_orb|t exists. This heteroclinic O Small. The transition from one pattern to the other is induced
bit is due to the spatial nonlinear resonance ofrtel and

. by a sudden increase 8f, which gives rise to a correspond-
2 modes, as already discussed by several aufi@r80-22. ;i rease in size of one of the two cells. Then for a short

For this solution, the role of imperfections in the system iSyjme the pattern consists of a unique cell that finally splits
known to make the heteroclinic orbit periodic, with a periodntg the two cells of the rotated pattern. In Fig. 5, the time
which decreases when imperfections are becoming more imsyolution of the amplitudes is showrecall that the precise
portant. In experiments, a possible imperfection originategajue of the period depends on the imperfections or on the
from the fact that the container is never perfectly hOfiZOﬂta'.precision of the Ca|cu|atio|)|s|:igure 6 presents the time evo-
For this reason, then=1 convective mode always has a |ution of the convective pattern during one period. Finally,
small, but nonvanishing, amplitude. In the numerical calcudet us recall that if no constant term is added to E) for
lations, these imperfections can easily be introduced by artithe numerical calculations, the machine epsilon plays the
ficially adding a small constant term to the right-hand side ofrole of the imperfection but its sign is undetermined. As a
Eqg. (13). Note, however, that this term must not necessarilyconsequence, the transition between the two two-cell pat-
be introduced into the description, since the numerical noisgerns has no fixed direction since any of the two cells can
which prevents the right-hand side from becoming exactlygrow before splitting. This numerical solution with no ex-
zero, is in fact sufficient for giving the heteroclinic orbit a plicit imperfection is thus not, strictly speaking, periodic
finite period. (noise-induced chaps

The periodic solution for the imperfect system is charac- The last stable solution of Eq&l2)—(14) appears in the
terized by the alternation of two quasistationary patternsifurcation diagram a¢é=53.5x 10" 2. At this point, the qua-
which are rotated byr/2 with respect to each other. For each sistationary part of the heteroclinic orljthe two-cell struc-
of these patterns, two convective cells are observed durinture) becomes stable, with a zero value foy. This solution
very long time intervals. These cells result from a superpois a superposition of then=2 and 0 modegmixed modes
M) and is represented in Fig. 7.

To end this section, we discuss briefly the convergence of
the bifurcation diagram when the number of modes taken
into account in the description is increased. First we have
checked that when the number of slaved modes is increased
by decreasing the minimum linear growth rate belevg0,
the values of the coefficients given in Table | actually con-
verge. The second important verification is carried out by
writing amplitude equations not only for the most unstable
three modes as in Eq§l2)—(14), but also for modes with
higher azimuthal wave numbers or for modes corresponding
to the second or the third eigenvalue for a givanin all
cases, we have observed that the bifurcation diagrams for the
more complex system give rise to the same transitions with
the same stable convective patterns.

V. DISCUSSION AND CONCLUSION

FIG. 4. Vertical velocity at middepth for the rotating wave ( In this work we have studied the nonlinear Rayleigh-
=32.8x1072), Benard-Marangoni thermoconvection within a circular con-
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t=115

FIG. 6. Vertical velocity at middepth for the heteroclinic orbét=40Xx 10~ 2). The timet corresponds to the abscissa in Fig. 5.

tainer of aspect ratio 2.5. We have shown that different conest values ok investigated here, a stable steady pattern can
vective patterns can appear in the heated fluid, depending dye observed which is made up by two symmetric convective
the distance to the threshold. Just above the linear stabilitgells (mixed modesM,, Fig. 7). For distances to the thresh-
threshold, a one-cell solution is displayédixed modeM 4, old larger than the upper limit for the rotating wave and
Fig. 3. For larger values of the distance to the threshold, amaller than the lower limit for th&1, solution, no station-
rotating one-cell solution is stablgotating wave RW, Fig. ary solution exists. The behavior of the fluid becomes dy-
4). Note, however, that the stability range on thexis for  namic and takes the form of a stable heteroclinic ofbig.

this rotating pattern is very small. For this reason, this con6). This solution is characterized by a switching between two
vective structure should be quite delicate to observe in extwo-cell patterns rotated by/2 with respect to each other. It
perimentgand is indeed not mentioned [i]). For the high-  is important to note that this mode switching is completely
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and Peez-Garca already described the possibility of such
heteroclinic cycles in the case of slippery containgi3].
However, the aspect ratio they predicted for this behavior is
not the same as in experiments, and the corresponding con-
vective patterns are also different from the experimental
structures, especially along the vertical walls. Note also that
the MW which can be stable in slippery containers is un-
stable in our analysis. In the present work, more realistic
no-slip lateral walls are taken into account and it is shown
that the heteroclinic orbit is still present. To our knowledge,
this analysis provides the first example of a real and nonaca-
demic physical system for which both experiments and a

rigorous theoretical analysis show the presence of a hetero-
FIG. 7. Vertical velocity at middepth for th#&1, solution (e clinic connection.
=55X10"2).
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