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Theoretical analysis of a dynamic thermoconvective pattern in a circular container
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The gravity- and surface-tension-driven thermoconvective instability of a fluid layer contained in a no-slip
circular container of aspect ratio 2.5 is investigated. Linear and nonlinear analyses are developed. From
amplitude equations the bifurcation diagram of the system is deduced, and the different stable convective
patterns are studied. In particular, it is shown that a stable heteroclinic cycle due to a 1-2 spatial resonance is
predicted. This cycle is also shown to be in agreement with recent experimental observations of a dynamic
mode switching.

PACS number~s!: 47.20.2k, 05.45.2a, 44.25.1f, 47.27.Te
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I. INTRODUCTION

Pattern formation is an important subject of fluid mecha
ics. In particular, Rayleigh-Be´nard-Marangoni thermocon
vective instabilities have interested many researchers
about a century. Interesting reviews and bibliography on
problem can be found, for instance, in the book by K
schmieder@1# or in Ref. @2#.

When a horizontal liquid layer is heated from below, it
well known that convection sets in provided the temperat
difference between the bottom and top of the system is la
than some critical value. In horizontally infinite layers th
instability is most often stationary@3#, and a steady regula
structure of hexagonal, square, or roll-like convective cell
observed above the threshold@4–6#. However, when the liq-
uid layer is confined in small containers with vertical sid
walls, fascinating nonsteady behaviors have also been
covered in experiments quite recently. In Ref.@7#,
Ondarçuhu et al. report observations of three kinds of osc
lating patterns in a square container with aspect ratio~width
over heigth! 4.6. These dynamic behaviors are related by
authors to the presence of a Takens-Bogdanov bifurcatio
the system.

More recently, in a circular container with aspect ra
~radius over height! equal to 2.5, a dynamic mode switchin
between two two-cell patterns related by ap/2 rotation about
the vertical symmetry axis of the system was observed@8#. In
this experiment, the fluid was lying below an air layer so th
both the gravity and the surface-tension variations with te
perature were active in the instability mechanis
~‘‘Rayleigh-Bénard-Marangoni instability’’!.

In the present paper, we propose a theoretical analys
this mode switching. More precisely, we show that the d
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namics of the system can be described by amplitude eq
tions forming a low-dimensional system of ordinary diffe
ential equations whose bifurcations give rise to the sa
dynamic behavior as that seen in experiments@8#.

Thermoconvective instabilities in confined domains ha
already been studied theoretically by several authors.
different works can be classified into two broad categori
depending on the type of boundary conditions used for
velocity along the sidewalls. In Refs.@9–12#, the sidewalls
of the containers are assumed to be ‘‘slippery,’’ or, mo
precisely, ‘‘vorticity free,’’ while more realistic no-slip walls
were considered, for instance, in Refs.@13–17# ~see also the
references from these papers!. The model of slippery walls is
quite convenient since it enables a complete separation o
vertical and horizontal space coordinates in the equations
a very interesting paper@12#, Echebarrı´a, Krmpotić, and
Pérez-Garcı´a described dynamic solutions in such containe
Their analysis showed the possibility of nonstationary beh
iors ~rotating waves, modulated rotating waves or hete
clinic orbit! resulting from a 1-2 spatial resonance of tw
different modes of convection. The purpose of the pres
work is to extend their approach to realistic no-slip sid
walls, and to compare the theoretical predictions with exp
ments.

II. BASIC EQUATIONS

The basic equations of the problem in the frame of
Boussinesq approximation are well known. Considering
perturbations with respect to a conductive state, these e
tions read

“•u50, ~1!

Pr21@] tu1u•“u#52“p1nu1RaTez , ~2!

] tT1u•“T2w5nT. ~3!
2663 ©2000 The American Physical Society
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We have chosen a verticalz axis in the direction opposite
to gravity. The equations are written in a nondimensio
form with distances scaled byd, the thickness of the liquid
layer. The time scale is given byd2/k, with k the heat dif-
fusivity of the liquid. The temperature scale is chosen asbd,
with b the vertical temperature gradient within the liqu
layer in a purely conductive state, and the velocity is sca
by k/d. Symbolsu5(u,v,w), p, andT represent the nondi
mensional velocity, pressure and temperature pertur
fields. The Rayleigh and Prandtl numbers Ra and Pr are
fined as

Ra5
gabd4

nk
, ~4!

Pr5
n

k
, ~5!

wheren anda are the liquid kinematic viscosity and coeffi
cient of thermal expansion.

The boundary conditions at the bottom of the boxz
50) express that the wall is rigid and perfectly heat condu
ing. The upper free surface (z51) is assumed to remai
undeformed, while the surface tension is supposed to b
linear function of temperature. The heat transfer is mode
using a Biot condition. The mathematical expressions
these conditions are

u5T50 at z50, ~6!

w5
]T

]z
1Bi T50 at z51, ~7!

]u

]z
1Ma

]T

]r
5

]v
]z

1Ma r 21
]T

]f
50 at z51, ~8!

wherer andf are the horizontal polar coordinates. The M
rangoni number Ma, given by

Ma5
gbd2

rnk
, ~9!

is expressed in terms ofg, the sign-changed derivative o
surface tension with respect to temperature, and the fl
mass densityr.

The lateral sidewalls are rigid and insulating so that o
has

u5
]T

]r
50 at r 5a, ~10!

wherea is the aspect ratio of the container.

III. LINEAR STABILITY ANALYSIS

A general linear stability analysis for this problem w
carried out in Ref.@17#. Only the results needed later a
given in Fig. 1, where the critical nondimensional tempe
ture differencelc , defined as

lc5
Rac

669
1

Mac

79.6
, ~11!
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is plotted as a function of the aspect ratioa, for a in the
neighborhood of 2.5 (Rac and Mac are the critical Rayleigh
and Marangoni numbers!. In the calculations leading to thes
curves, as well as in the other results presented in this pa
the thickness of the liquid layer is 5 mm (a is varied by
changing the radius of the container!. The viscosity of the
fluid is 1 S (1024 m2 s21), and the Prandtl number is equ
to 1000. The air layer above the liquid has a depth equa
half of the depth of the liquid layer, so that the air layer c
be considered as purely conductive@3,18,19#. An equivalent
Biot number can then be defined by using Eq.~4.1! in Ref.
@16#. With conductivities for the air and for the liquid bein
0.026 and 0.16 W m21 K21, respectively, this Biot number is
equal to 0.43. The negative of the derivative of surface t
sion with respect to temperature is equal to 531025

N m21 K21, and the density of the liquid is 968 kg m23. The
coefficient of thermal expansion is fixed to 9.631024 K21.
The above values for the different quantities are chosen
order to correspond to the experiments reported in Ref.@8#,
except that the thickness of the air layer is smaller in orde
ensure that the upper gas remains mechanically passive@3#.

The different curves in Fig. 1 correspond to different va
ues of the azimuthal wave numberm. For eachm, thick and
thin lines are used to represent the threshold of the first
second eigenmodes, respectively. In the neighborhood oa
52.5, the convective threshold is characterized by anm51
pattern. Fora52.5,lc is equal to 1.24, while the critica
Rayleigh and Marangoni numbers are given by 292 and 6
respectively. A codimension-two point appears ata52.961.
For this aspect ratio, them51 and 2 critical curves intersec
and the two modes are simultaneously unstable. Note tha
m50 mode becomes unstable quite close to the instab
threshold of them51 and 2 patterns. It is important to men
tion that these results are quite different from those obtai
under the assumption of slippery lateral walls~see, for in-
stance, Fig. 1 in Ref.@12#!. In particular, them50 curve for
slippery walls is quite far from the intersection of the oth

FIG. 1. Critical nondimensional temperature difference vs
pect ratio. The first and second eigenvalues are represented as
and thin lines. The value of the azimuthal wave numberm is indi-
cated on each curve.
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two modes. Moreover, the aspect ratio giving rise to
codimension-two point is much smaller (a'1.15) than ours.

IV. NONLINEAR THERMOCONVECTION FOR aÄ2.5

The second step of our analysis is devoted to a descrip
of the system above the convective threshold, i.e., in
nonlinear regime. The method consists in reducing the
namics of the system to the dynamics of the most unsta
modes. The procedure is completely similar to that presen
in Ref. @16# for the study of rectangular no-slip containe
and will be summarized only very shortly. The solution
the nonlinear partial differential equations system is first
panded in a series of the eigenmodes of the linear prob
These eigenmodes are numerically obtained by fixing
temperature difference across the liquid to its critical va
and by considering the linear growth rate as the eigenva
In the weakly nonlinear regime, the dynamics of the syst
is dominated by the dynamics of the most unstable mode
convection with the largest growth rates. A careful exami
tion of the numerical data corresponding to Fig. 1 shows t
for a52.5, the firstm50, 2, and 3 modes~thick lines! be-
come successively linearly unstable for relative distance
the threshold@e5(l2lc)/lc)] equal to 6.3731022, 8.53
31022, and 15.4731022. All the other modes become un
stable for still larger values ofe. Therefore we choose th
m50, 1, and 2 modes as the most unstable convective
terns, or ‘‘active’’ modes, whose interactions determine
weakly nonlinear behavior of the fluid layer. The so-call
amplitude equations are then obtained by a standard sla
principle ~see, for instance, Ref.@16#!, for which the slaved
modes are all the~nonactive! eigenmodes with a linea
growth rate larger than250 and with an azimuthal wav
numberm between 0 and 4; all the other modes are sim
disregarded. The validity and convergence of this proced
will be discussed briefly later on. The obtained system
equations for the complex amplitudesA0 , A1, andA2 of the
m50, 1, and 2, modes is the following:

Ȧ05~ l 0e1s0!A01q000A0
21q011uA1u21q022uA2u21c0000A0

3

1c0011A0uA1u21c0022A0uA2u21c0112~A1
2A2

!1A2A1
!2!,

~12!

Ȧ15~ l 1e1s1!A11q101A0A11q112A1
!A21c1001A0

2A1

1c1012A0A1
!A21c1111uA1u2A11c1221uA2u2A1 , ~13!

Ȧ25~ l 2e1s2!A21q202A0A21q211A1
21c2002A0

2A2

1c2011A0A1
21c2112uA1u2A21c2222uA2u2A2 . ~14!

The values of the different coefficients in these equati
are given in Table I~the normalization condition used for th
eigenmodes was given in Ref.@17#!. Equations~12!–~14!
describe the interactions of the three modesm50, 1, and 2
in the neighborhood of the threshold. When polar coor
nates are used for the complex amplitudes, the rotatio
invariance of the physical system allows the removal of o
of the two phase variables. The equilibrium solutions of t
reduced system correspond for the real physical system
e
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ther to stationary solutions or to traveling~rotating! waves
@12#. A standard bifurcation analysis usingAUTO97 software
was carried out on this system. The bifurcation diagram
given in Fig. 2, where the full and dashed lines represent
stable and unstable solutions, respectively. Ate50 ~point
B1), the m51 mode bifurcates supercritically. Its nonline
autointeraction generates them50 and 2 modes, so that th
complete pattern is a superposition of the three modes.
convective pattern of this mixed mode solutionM1 is de-
picted in Fig. 3, where the vertical velocity at middepth
the container is plotted. The primary bifurcations of them
50 and 2 modes ate56.3731022 ~point B0) and 8.53
31022 ~point B2) do not give rise to stable solutions. On th
M1 branch, thanks to a secondary bifurcation, another sta
solution which corresponds to a rotating wave (RW) patt
appears. This RW pattern exists only for a small range oe,
between 31.731022 and 33.031022. The rotating pattern is
also a superposition of the three elementary modes an
represented in Fig. 4. The period of rotation is 126~nondi-
mensional time! for e532.831022. For the silicon oil used
in the experiments@8#, the dimensional period is then aroun
10 h, so that the rotation is quite slow. The RW branch lo
stability at e533.031022 due to a Hopf bifurcation. This
bifurcation is subcritical and no stable modulated wa

TABLE I. Values of the coefficients of the amplitude equations

A0 A1 A2

l 0 5.83 l 1 7.63 l 2 8.32
s0 20.372 s1 0.00 s2 20.710
q000 1.89 q101 0.742 q202 21.64
q011 17.1 q112 9.89 q211 1.02
q022 17.0
c0000 226.4 c1001 224.5 c2002 29.99
c0011 2137. c1012 233.1 c2011 227.0
c0022 2180. c1111 2106. c2112 2164.
c0112 8.95 c1221 2106. c2222 271.8

FIG. 2. Bifurcation diagram fora52.5. The amplitudeA0 of the
m50 mode is represented as a function of the relative distanc
the thresholde. Stable and unstable branches are represented by
and dashed lines.B1 ,B0, and B2 indicate the primary bifurcation
points for them51, m50, andm52 modes.
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(MW) can be observed. From this bifurcation point untile
553.531022, no stationary solution exists for the reduc
system. Numerical integrations have shown that in thise
range, a stable heteroclinic orbit exists. This heteroclinic
bit is due to the spatial nonlinear resonance of them51 and
2 modes, as already discussed by several authors@12,20–22#.
For this solution, the role of imperfections in the system
known to make the heteroclinic orbit periodic, with a peri
which decreases when imperfections are becoming more
portant. In experiments, a possible imperfection origina
from the fact that the container is never perfectly horizon
For this reason, them51 convective mode always has
small, but nonvanishing, amplitude. In the numerical cal
lations, these imperfections can easily be introduced by a
ficially adding a small constant term to the right-hand side
Eq. ~13!. Note, however, that this term must not necessa
be introduced into the description, since the numerical no
which prevents the right-hand side from becoming exac
zero, is in fact sufficient for giving the heteroclinic orbit
finite period.

The periodic solution for the imperfect system is char
terized by the alternation of two quasistationary patte
which are rotated byp/2 with respect to each other. For ea
of these patterns, two convective cells are observed du
very long time intervals. These cells result from a super

FIG. 3. Vertical velocity at middepth for theM1 solution (e
51531022).

FIG. 4. Vertical velocity at middepth for the rotating wave (e
532.831022).
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sition of the m52 and 0 modes, whileA1 remains very
small. The transition from one pattern to the other is induc
by a sudden increase ofA1, which gives rise to a correspond
ing increase in size of one of the two cells. Then for a sh
time, the pattern consists of a unique cell that finally sp
into the two cells of the rotated pattern. In Fig. 5, the tim
evolution of the amplitudes is shown~recall that the precise
value of the period depends on the imperfections or on
precision of the calculations!. Figure 6 presents the time evo
lution of the convective pattern during one period. Final
let us recall that if no constant term is added to Eq.~13! for
the numerical calculations, the machine epsilon plays
role of the imperfection but its sign is undetermined. As
consequence, the transition between the two two-cell p
terns has no fixed direction since any of the two cells c
grow before splitting. This numerical solution with no e
plicit imperfection is thus not, strictly speaking, period
~noise-induced chaos!.

The last stable solution of Eqs.~12!–~14! appears in the
bifurcation diagram ate553.531022. At this point, the qua-
sistationary part of the heteroclinic orbit~the two-cell struc-
ture! becomes stable, with a zero value forA1. This solution
is a superposition of them52 and 0 modes~mixed modes
M2) and is represented in Fig. 7.

To end this section, we discuss briefly the convergence
the bifurcation diagram when the number of modes tak
into account in the description is increased. First we ha
checked that when the number of slaved modes is increa
by decreasing the minimum linear growth rate below250,
the values of the coefficients given in Table I actually co
verge. The second important verification is carried out
writing amplitude equations not only for the most unstab
three modes as in Eqs.~12!–~14!, but also for modes with
higher azimuthal wave numbers or for modes correspond
to the second or the third eigenvalue for a givenm. In all
cases, we have observed that the bifurcation diagrams fo
more complex system give rise to the same transitions w
the same stable convective patterns.

V. DISCUSSION AND CONCLUSION

In this work we have studied the nonlinear Rayleig
Bénard-Marangoni thermoconvection within a circular co

FIG. 5. Time evolution of the amplitudes for the heteroclin
orbit (e54031022).
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FIG. 6. Vertical velocity at middepth for the heteroclinic orbit (e54031022). The timet corresponds to the abscissa in Fig. 5.
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tainer of aspect ratio 2.5. We have shown that different c
vective patterns can appear in the heated fluid, dependin
the distance to the threshold. Just above the linear stab
threshold, a one-cell solution is displayed~mixed modeM1,
Fig. 3!. For larger values of the distance to the threshold
rotating one-cell solution is stable~rotating wave RW, Fig.
4!. Note, however, that the stability range on thee axis for
this rotating pattern is very small. For this reason, this c
vective structure should be quite delicate to observe in
periments~and is indeed not mentioned in@8#!. For the high-
-
on
ity

a

-
x-

est values ofe investigated here, a stable steady pattern
be observed which is made up by two symmetric convec
cells ~mixed modesM2, Fig. 7!. For distances to the thresh
old larger than the upper limit for the rotating wave a
smaller than the lower limit for theM2 solution, no station-
ary solution exists. The behavior of the fluid becomes d
namic and takes the form of a stable heteroclinic orbit~Fig.
6!. This solution is characterized by a switching between t
two-cell patterns rotated byp/2 with respect to each other. I
is important to note that this mode switching is complete
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similar to the experimental observations of Johnson
Narayanan~see Fig. 2 in Ref.@8#!. In their work, these au-
thors sensed that this dynamic behavior of the fluid had to
attributed to the presence of a codimension-2 point,
which them52 and 0 modes are simultaneously unstab
The present analysis definitely shows that the codimensio
point is actually present in the system, but them51 and 2
modes collaborate to generate the spatial resonance an
heteroclinic orbit. This kind of heteroclinic behavior is o
course important in the context of the study of the transitio
to complex behaviors in dynamical systems, and has alre
been considered by several authors in the past~see, for in-
stance Refs.@12,20–23#, and references therein!. In particu-
lar, we have already mentioned that Echebarrı´a, Krmpotić,

FIG. 7. Vertical velocity at middepth for theM2 solution (e
55531022).
os

y

ch

ch
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e
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dy

and Pe´rez-Garcı´a already described the possibility of suc
heteroclinic cycles in the case of slippery containers@12#.
However, the aspect ratio they predicted for this behavio
not the same as in experiments, and the corresponding
vective patterns are also different from the experimen
structures, especially along the vertical walls. Note also t
the MW which can be stable in slippery containers is u
stable in our analysis. In the present work, more realis
no-slip lateral walls are taken into account and it is sho
that the heteroclinic orbit is still present. To our knowledg
this analysis provides the first example of a real and nona
demic physical system for which both experiments and
rigorous theoretical analysis show the presence of a het
clinic connection.
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